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S

Generalised estimating equations enable one to estimate regression parameters consist-
ently in longitudinal data analysis even when the correlation structure is misspecified.
However, under such misspecification, the estimator of the regression parameter can be
inefficient. In this paper we introduce a method of quadratic inference functions that does
not involve direct estimation of the correlation parameter, and that remains optimal even
if the working correlation structure is misspecified. The idea is to represent the inverse of
the working correlation matrix by the linear combination of basis matrices, a represen-
tation that is valid for the working correlations most commonly used. Both asymptotic
theory and simulation show that under misspecified working assumptions these estimators
are more efficient than estimators from generalised estimating equations. This approach
also provides a chi-squared inference function for testing nested models and a chi-squared
regression misspecification test. Furthermore, the test statistic follows a chi-squared distri-
bution asymptotically whether or not the working correlation structure is correctly
specified.

Some key words: Generalised estimating equation; Generalised method of moments; Linear approximate
inverse; Longitudinal data; Quadratic inference function; Quasilikelihood.

1. I

Generalised estimating equations were developed from generalised linear models
(Nelder & Wedderburn, 1972; McCullagh & Nelder, 1989) and quasilikelihood
(Wedderburn, 1974; McCullagh, 1983) to deal with nonnormal correlated longitudinal
data. Liang & Zeger (1986) introduced the ingenious idea of using a working correlation
matrix with a small set of nuisance parameters a to avoid specification of correlation
between measurements within the cluster. The generalised estimating equation estimators
of the regression parameter b are consistent even when the true correlation matrix is not
an element of the class of working correlation matrices, and are efficient when the working
correlation is correctly specified, in the sense that the asymptotic variance of b@ reaches a
Cramér–Rao-type lower bound.
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When the working correlation is misspecified, however, the moment estimator of the
nuisance parameter a suggested by Liang & Zeger (1986) no longer results in the optimal
estimation of b. Furthermore, their estimator of a does not exist in some simple cases of
misspecification (Crowder, 1995).

The purpose of this paper is to introduce a different strategy for estimating the working
correlation so that the estimator always exists, and, even if the correlation is misspecified,
the regression estimator remains optimal within the assumed family, and hence is more
efficient than Liang & Zeger’s regression estimator under the same misspecification. To
motivate our method, consider the simple case where b is a scalar. The asymptotic variance
of the estimator of b, s2 (a), say, is a function of a, the working correlation parameters. If,
instead of estimating a by the method of moments, we choose a@ by minimising s2 (a)
among all possible a, then the existence of a@ would be guaranteed, and furthermore the
estimator of b would be optimal among the choices of a, whether or not the working
correlation structure is correctly specified. Since we minimise the empirical asymptotic
variance rather than the parametric one, we require no additional moment assumption
than does the generalised estimating equation method. This idea of maximising the empiri-
cal information was introduced by Lindsay (1985) to construct optimally weighted con-
ditional scores free of nuisance parameters, and was also used in unpublished work by
B. Li to derive nonparametric optimal estimating equations for independent errors without
assuming a functional mean-variance relationship.

If b is a scalar, then the above minimisation is straightforward. However, if b is a vector,
we have to minimise an empirical asymptotic covariance matrix, which may not have a
Löwner-optimal solution for a typical problem. To circumvent this problem, we introduce
a quadratic inference function method based on the generalised method of moments
(Hansen, 1982). This enables us to embed the multivariate working correlation problem
into a larger linear optimisation problem, where the Löwner-optimal solution exists and
is explicit.

A quadratic inference function has the form Q(b)=g∞C−1g, where g is a set of estimating
functions based on moment assumptions and C is the estimated variance of g. The quad-
ratic inference function plays an inferential role similar to that of the negative of the
loglikelihood, with parallel construction of point estimators and chi-squared tests. The
associated point estimator is the minimiser of Q(b), and has the minimum asymptotic
variance matrix, in the Löwner ordering, over all estimating functions constructed by
linear combinations of the elements of g (Hansen, 1982; Lindsay, 1982). Our simulation
results will show that the quadratic inference function method with appropriate scores g
is more efficient than the generalised estimating equation approach when the working
structure is misspecified.

For hypothesis testing, we establish some new inferential properties for the Q(b)-based
test statistics that extend the results of Hansen (1982) and Lee (1996). The test statistics
we propose follow a x2 distribution asymptotically whether or not the working correlation
structure is correctly specified; this contrasts with Rotnitzky & Jewell’s (1990) score test
result in that their test distributions are not robust against misspecified working assump-
tions. The test statistics are shown to be asymptotically noncentral x2 under local
alternatives.

Another method for increasing efficiency was proposed by Prentice & Zhao (1991),
who jointly solved estimating equations associated with the response mean and covariance
matrix. However, this requires the functional form of the third and fourth moments, and
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so is more restrictive in assumptions than the generalised estimating equation itself. Our
method requires no such additional assumption.

Section 2 introduces the quadratic inference function based on the generalised method
of moments (Hansen, 1982) and the linear approximate inverse described in unpublished
work by B. G. Lindsay, A. Qu and S. Lele. Section 3 discusses the inferential properties
of quadratic inference functions for x2 testing, and § 4 illustrates comparisons of the
generalised estimating equation and extended quadratic inference function methods using
biomedical data for longitudinal binary outcomes. The final section provides a brief
discussion.

2. Q  

2·1. Quasilikelihood equations and generalised estimating equations

Let y
it

be an outcome variable and x
it

be a q×1 vector of covariates, observed at times
t=1, . . . , n

i
for subjects i=1, . . . , N. We assume that the observations from different

subjects are independent, but that those within the same subject are dependent. We assume
further that E(y

it
)=m(x∞

it
b). We ask how b can be most efficiently estimated using this

information.
Given a k-dimensional score vector m(y, x, b) that satisfies the moment assumption

E(m)=0, the estimating function g that is the optimal linear combination of the elements
of m based on the projection theorem (Small & McLeish, 1994, p. 79) is

gopt=(Em< )∞S−1m, (1)

where m< is the k×q matrix whose entries are ∂m
i
/∂b, and S is the k×k covariance

matrix of m. The optimality is in the sense that the asymptotic variance of the solution to
gopt (b)=0 reaches the minimum among all estimating equations formed by taking linear
combinations of m.

To formulate our problem, let y
i
be the vector (y

i1
, . . . , y

in
i

)∞, m
i
be (m

i1
, . . . , m

in
i

)∞, V
i
be

the covariance matrix of the vector y
i
and m< i be the n

i
×q matrix

{∂m
it
/∂b : i=1, . . . , N; t=1, . . . , n

i
}.

Then, if we let m be the vector ((y1−m1 )∞, . . . , (yN−m
N
)∞)∞, the general formula (1) reduces

to the quasilikelihood equation

gopt=∑ m< ∞iV −1i
(y
i
−m

i
). (2)

If V
i
is unknown, one might use (2) with empirical estimators VC

i
for the V

i
. However, if

the size of V
i
is large, there will be many nuisance parameter estimations, and a high risk

of numerical error in the inversion of VC
i
. To avoid this, Liang & Zeger (1986) introduced

the idea of using a working correlation matrix W (a) which depends on fewer nuisance
parameters a. The common working correlation structure could be as simple as indepen-
dent, equicorrelated, first-order autoregressive,  (1), or could be unspecified. The use of
(2) with estimated working parameters a is known as the method of generalised estimating
equations.

2·2. Quadratic inference functions

We will model R−1 by the class of matrices

∑
m

i=1
a
i
M
i
, (3)
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where M1 , . . . , Mm
are known matrices and a1 , . . . , am are unknown constants. This is a

sufficiently rich class that accommodates, or at least approximates, the correlation struc-
tures most commonly used. Note, however, that we do not need to assume that class (3)
contains the true correlation matrix, as subsequent development does not depend on this
assumption.

Example 1. Suppose R(a) is an equicorrelated matrix; it has 1’s on the diagonal, and
a’s everywhere off the diagonal. Then R−1 can be written as a0M0+a1M1 , where M0 is
the identity matrix and M1 is a matrix with 0 on the diagonal and 1 off the diagonal.
Here a0=−{(n−2)a+1}/k1 and a1=a/k1 , where k1= (n−1)a2−(n−2)a−1 and n is
the dimension of R. Note that this is not a unique linear representation of R−1; we could
also choose M1 to be the rank-1 matrix with 1 everywhere.

Example 2. Suppose R(a) is the first-order autoregressive correlation matrix, with R
ij
=

a|i−j|. The exact inversion of R−1 can be written as a linear combination of three basis
matrices; they are M0 , M1 and M2 , where M0 is the identity matrix, M1 has 1 on the two
main off-diagonals and 0 elsewhere, and M2 has 1 on the corners (1, 1) and (n, n), and 0
elsewhere. Here a0= (1+a2)/k2 , a1=−a/k2 and a2=−a2/k2 , where k2=1−a2. A simple
approximation to R−1 would use just M0 and M1 . The third term of the inverse in this
example captures the edge effect of the process  (1) while the two-term approximation
does not.

Although the above two cases will be our primary examples here, the pool of possibil-
ities is considerably richer. The literature on multivariate normal models, for example, has
considerable discussion of the situation where the covariance matrix S has a parametric
linear inverse structure of the type we describe. In this case there are complete and sufficient
statistics for all parameters and sometimes explicit point estimators (Seely, 1971). In
particular, we note the following important class of models, where the linear structure for
S−1 arises naturally from a linear structure for S.

Estimation of covariance matrices which are linear combinations, or whose inverses are
linear combinations, of given matrices was intensively studied by Anderson (1969, 1970).
Under the assumption of normality, if consistent estimators of the coefficients of the linear
combinations are used to obtain the regression parameter, then the estimator of the
regression parameters is asymptotically efficient (Anderson, 1973).

Consider the covariance matrices generated by balanced nested design structures. For
example, suppose that the correlation matrix R for a cluster of size 4 has the block
structure R=a0I+a1M1+a2M2 , where M1 has all entries equal to 1 and M2 has the
structure

M2=A1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1B .
This model might arise if we had two blocks of size 2 inside the cluster of size 4. Both
P1=0·25M1 and P2=0·5M2 are projection matrices, corresponding to projection on to
(1, 1, 1, 1)∞ and span {(1, 1, 0, 0), (0, 0, 1, 1)} respectively. Furthermore, the subspaces are
nested, with P1P2=P2P1=P1 . We show that in this case R−1 has the same linear structure.
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Suppose we have a linear representation for S of the form

a0I+a1P1+a2P2+ . . .+ a
d
P
d
,

where the P
j
are projection matrices and there is closure under multiplication in the sense

that, for every (i, j ), there exists k such that P
i
P
j
=P

k
, for some k; that is, the pairs of

subspaces corresponding to the projections are either nested or orthogonal. Then we can
write the inverse in the form S−1=b0I+b1P1+ . . .+b

d
P
d
. The coefficients b

j
are deter-

mined by solving the equations generated by the relationship

(a0I+a1P1+a2P2+ . . .+a
d
P
d
)(b0I+b1P1+ . . .+b

d
P
d
)=1I+0P1+0P2+ . . .+0P

d
.

This calculation is simplified if the P
j

are orthogonal and idempotent, as then we
have a0b0=1 and a0bj+a

j
b0+a

j
b
j
=0 for every j�1. If a0=1, then b0=1 and

b
j
=−a

j
/(1+a

j
) for all j�1.

Substituting (3) into (2), consider the following class of estimating functions:

∑
N

i=1
m< ∞iA−Di (a1M1+ . . .+a

m
M
m
)A−D

i
(y
i
−m

i
), (4)

where m< i is the derivative of m
i
with respect to regression parameters b, and A

i
is the

diagonal marginal covariance matrix for the ith cluster.
One approach to estimation would be to choose the parameters a=(a1 , . . . , am) so as

to optimise some function of the information matrix associated with (4). Instead, we
proceed as follows. Based on the form of the quasi-score, we define the ‘extended score’
g
N

to be

g
N
(b)=

1

N
∑
N

i=1
g
i
(b)=

1

N AWN
i=1

(m< i)∞A−Di M1A−Di (y
i
−m

i
)

e
WN
i=1

(m< i )∞A−Di M
m
A−D
i

(y
i
−m

i
)B . (5)

Note that the estimating function (4) is a linear combination of elements of the extended
score vector (5).

The vector g
N

contains more estimating equations than parameters, but these estimating
equations can be combined optimally using the generalised method of moments (Hansen,
1982). This method is an extension of the minimum x2 method introduced by Neyman
(1949) and further developed by Ferguson (1958). The idea is to construct an estimator
of b by setting specified linear combinations of the r estimating equations in g

N
as close

to zero as possible when r>q. That is, b@ is obtained by minimising the weighted length
of g

N
:

b@= arg min
b

g∞
N
W −1g

N
.

Hansen (1982) has shown that b@ is efficient if W is the variance matrix of g
N
. The intuition

is that W −1 gives less weight to the estimating equations with larger variances.
Based on the extended scores g

N
, we define the quadratic inference function to be

Q
N
(b)=g∞

N
C−1
N

g
N
, (6)

where C
N
=(1/N2 )WN

i=1
g
i
(b)g∞

i
(b). Note that C

N
depends on b. Clearly, Q

N
is analogous

to Rao’s (1947) score test statistic and possesses inferential properties similar to the score
test, but differs in that the dimension of the score g

N
is greater than that of b.
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An example of Q
N
(b) is plotted in Fig. 1. There we have used the identity link

m(x
it
, b)=x∞

it
b,

where x∞
it
= (x1

it
, x2

it
), b= (b1 , b2)∞, for i=1, . . . , 20 and t=1, . . . , 10. The covariates x1

i
and

x2
i

are generated independently from a multivariate normal distribution with mean
(0·1, 0·2, . . . , 1·0) and covariance matrix I. The response variable is defined by

y
i
=b1x1i+b2x2i+e

i
,

where b1=b2=1 and e
i

is generated from a 10-dimensional normal distribution with
mean 0, marginal variance 1 and an (1) correlation structure with autocorrelation
a=0·7. We construct the extended score g

N
using M0 , M1 as in Example 1. Note that in

this case Q
N

has a unique minimum point.

120

80

40

0
2

21·5
1

0·5
0 0 0·5

1 1·5

QN(β)

β2 β1

Fig. 1. Test statistic Q
N
(b)=g∞

N
C−1
N

g
N

for two-dimensional
b, where g

N
is defined by (5).

The quadratic inference function estimator b@ is then defined to be

b@= arg min
b

Q
N
(b). (7)

The corresponding estimating equation for b is

Q̇
N
(b)=2g< ∞

N
C−1
N

g
N
−g∞

N
C−1
N

Ċ
N
C−1
N

g
N
=0, (8)

where g<
N

is the mq×q matrix {∂g
N
/∂b}, Ċ

N
is the three-dimensional array

(∂C
N
/∂b1 , . . . , ∂CN

/∂b
q
), and g∞

N
C−1
N

Ċ
N
C−1
N

g
N

is a q×1 vector

{g∞
N
C−1
N

(∂C
N
/∂b

i
)C−1

N
g
N

: i=1, . . . , q}.

To solve equation (8), we implement the Newton–Raphson algorithm, which requires
the second derivative of Q

N
in b:

Q̈
N
(b)=2g< ∞

N
C−1
N

g<
N
+R

N
,

where

R
N
=2g̈∞C−1g−4g< ∞NC−1

N
Ċ
N
C−1
N

g
N
+2g∞

N
C−1
N

C−1
N

Ċ
N
C−1
N

g
N
−g∞

N
C−1
N

C̈
N
C−1
N

g
N
.

Here C̈
N

is a four-dimensional array {∂2C
N
/∂b

i
∂b

j
: i, j=1, . . . , q}, and g∞

N
C−1
N

C̈
N
C−1
N

g
N

is a q×q matrix {g∞
N
C−1
N

(∂2C
N
/∂b

i
∂b

j
)C−1

N
g
N

: i, j=1, . . . , q}. Asymptotically Q̈
N
(b) can

be approximated by 2g< ∞
N
C−1
N

g<
N

since R
N

is o
p
(1). The Newton–Raphson method then

iterates the following relationship to convergence:

b@ (j+1)=b@ (j)−Q̈−1
N

(b@ (j))Q̇
N
(b@ (j)).

The optimality of the quadratic inference function estimator is easily established. Note
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that the second term of equation (8) is O
p
(N−1), so that solving (8) is asymptotically

equivalent to solving

g< ∞
N
C−1
N

g
N
=0. (9)

This equation is presented only for the convenience of the asymptotic analysis; for esti-
mation of b we still recommend the definition in (7), which, among other features, removes
ambiguity when (9) has multiple roots. Since g<

N
is nonrandom, we have E(g<

N
)=g<

N
. The

matrix C
N

converges to E(C
N
) in probability; the weight in (9) therefore converges in

probability to the optimal weight (Eg<
N
)∞(EC

N
)−1. By the projection theorem (Lindsay,

1982; Small & McLeish, 1994, p. 79), it can be verified that (9) is optimal among the class
of estimating equations

∑
m

r=1
H
r
∑
N

i=1
m< ∞iA−Di M

r
A−D
i

(y
i
−m

i
)=0, (10)

where H
r
(r=1, . . . , m) are q×q arbitrary nonrandom matrices. Note that, if H

r
=a

r
I for

the identity matrix I, then the left-hand side of (10) becomes the same as (4).
Hence, if the inverse of the true correlation matrix R−1 belongs to the class

Wm
r=1

a
r
M
r
, then (9) is fully efficient, that is, as efficient as the quasilikelihood (2); if not,

(9) will still be optimal within the family (10).
The role played by the quadratic inference function here is to embed the smaller model

(4) into the larger model (10), for which optimisation is easily achieved. In addition,
equation (8), which differs from (9) only by an ignorable term, enables us to use the
objective function Q in conjunction with our algorithm, as equation (9) does not corre-
spond to the minimum of any criterion; see Hansen (1982) for proofs of normality and
optimality.

2·3. Simulation results for point estimates

We now compare the quadratic inference function and generalised estimating equation
methods by simulation. We generate data by simulation as in § 2·2, using both the  (1)
and the equicorrelated correlation structures. The two methods are applied to each
sample and the mean squared error of the estimators is estimated by averaging
(b@1−b1 )2+ (b@ 2−b2 )2 over all samples. The simulated relative efficiency, , is defined
as

=
mean squared error of the generalised estimating equation estimator

mean squared error of quadratic inference function estimator
. (11)

Table 1 records  over a variety of working assumptions and shows that, if the working
correlation structure is misspecified, the quadratic inference function approach is more
efficient than the generalised estimating equation method. In particular, when the true
correlation structure is  (1) with autocorrelation a=0·7, but the working assumption
is equicorrelated, =1·34; and =2·07 when the true structure is equicorrelated with
common correlation a=0·7 and the working assumption is (1), with M0 , M1 and M2
in Example 2 as basis matrices.

On the other hand, when the working structure is correct, the two methods are almost
equivalent, with  in the range 0·97–0·99. Since the generalised estimating equation
estimators of the nuisance parameter are the maximum likelihood estimators when e is
normal and the working assumption is correct, the generalised estimating equation method
is optimal in that case.
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Table 1. Simulated relative eYciency, , of
b as defined in (11), calculated from 10 000
simulations, for E(y

it
)=x∞

it
b, where b= (1, 1)∞,

and when the true nuisance parameter is
r=0·3 and r=0·7

Working R
True R r Equicorrelated (1)

Equicorrelated 0·3 0·99 1·20
0·7 0·99 2·07

(1) 0·3 1·04 0·97
0·7 1·34 0·98

We have also performed simulations for correlated Poisson data, again demonstrating
the superiority of the quadratic inference function approach to the generalised estimating
equation method under misspecified working structure.

3. C- 

In this section, we give the asymptotic limiting distribution of the quadratic inference
function under the null hypothesis and local alternatives.

Suppose that the regression parameter b is partitioned into (y, l), where y is a regression
parameter of interest with dimension p, and l is a nuisance regression parameter with
dimension q−p. As a special case, we also allow p=q, with b=y and l being absent.
For testing the hypothesis H0 : y=y0 , we propose using Q(y0 , lA )−Q(y@ , l@ ), where

lA=arg min
l

Q(y0 , l), (y@ , l@ )=arg min
(y,l)

Q(y, l). (12)

We define a parametric family of local alternatives to P
b
0

to be a set of distributions
{P
b
}, indexed by b in some neighbourhood of b0 , satisfying the zero-mean assumption

locally, that is E
b
0

g(b0)=0, and LeCam’s local asymptotic normality conditions (Hall &
Mathiason, 1990).

To simplify the notation, let

∂Q
N
∂y
=Q̇

y
,
∂Q

N
∂l
=Q̇

l
,
∂2Q

N
∂y2

=Q̈
yy

,
∂2Q

N
∂y ∂l

=Q̈
yl

,
∂2Q

N
∂l2
=Q̈

ll
.

Write

d∞
0
S−1d0=AJyy J

yl
J
ly

J
ll
B .

Note that, if y and l converge in probability to y0 and l0 respectively, then 1
2
Q̈
yy

(y, l)
and 1

2
Q̈
yl

(y, l) converge in probability to J
yy

and J
yl

respectively.

T 1. Suppose that y has dimension p, and all required regularity conditions
are satisfied. T hen, under the null hypothesis, Q

N
(y, lA )−Q

N
(y@ , l@ ) is asymptotically

x2
p
; under the local alternative hypothesis H

a
: y=y0+N−Dh

y
and l=l0+N−Dh

l
,

Q
N
(y, lA)−Q

N
(y@ , l@ ) is asymptotically noncentral x2

p
with noncentrality parameter d

y
=

h∞
y
(J
yy
−J

yl
J−1
ll

J
yl

)h
y
.
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Theorem 1 is proved in the Appendix. In the special case where no nuisance parameter
is present, Q

N
(b0 )−Q

N
(b@ ) is asymptotically x2

q
under the null hypothesis; under the local

alternative hypothesis H
a
: b
N
=b0+N−Dh, Q

N
(b0)−Q

N
(b@ ) is asymptotically noncentral

x2
q
(d ), with the noncentrality parameter d=h∞d∞

0
S−1d0h.

We can also construct a goodness-of-fit statistic to test the model assumption

H0 : E{g
N
(b)}=0. (13)

Since b@ is obtained by equating q linear combinations of the mq components of g
N

to
zero, there remain mq−q linear combinations of g

N
that should be close to zero under

the above model assumption. On these grounds, it is natural to use Q
N
(b@ ) as the test

statistic. This test was called an ‘over-identifying restriction’ test by Hansen (1982).

T 2 (Hansen, 1982). Suppose g
N

has dimension r and b has dimension q with
q<r. T hen, under the model assumption (13), the asymptotic distribution of Q

N
(b@ ) is x2 with

r−q degrees of freedom.

For small samples and symmetric data, our simulation results show that the tests in
Theorems 1 and 2 are conservative relative to their nominal x2 distributions. This occurs
because we have used C

N
in place of the covariance matrix of g

N
. Gine & Mason (1997)

show that in the univariate case the ‘uncentred’ t-statistics C−D
N

g
N

for symmetric data
follow a sub-Gaussian distribution; that is, the moment generating function is bounded
from above by the normal moment generating function. This explains why statistics based
on Q

N
have lighter tails than the x2 distributions.

Example 3. To examine the finite sample null distributions, we use the same simulated
data as in § 2·3. We assume an equicorrelated working correlation matrix R, and so two
basis matrices, I and M1 , see Example 1, can be used for the expansion of R−1. Therefore,
our moment conditions are specified by the following vector of length 4:

g
N
(b)=

1

NA WN
i=1

(x1
i
)∞A−1

i
(y
i
−m

i
)

WN
i=1

(x2
i
)∞A−1

i
(y
i
−m

i
)

WN
i=1

(x1
i
)∞A−D

i
M
1
A−D
i

(y
i
−m

i
)

WN
i=1

(x2
i
)∞A−D

i
M
1
A−D
i

(y
i
−m

i
)B .

Figure 2 shows Q–Q plots of Q
N
(b)−Q

N
(b@ ) based on 10 000 simulated datasets for two

different covariance structures, namely equicorrelated or  (1). It is clear that the plots
indicate proximity to the x2

2
distribution, even though the number of clusters N=20 is

fairly small. The corresponding plot for Q
N
(b@ ) is very similar, also indicating proximity

to x2
2
. For the test of Theorem 1 we partitioned b into (y, l). A Q–Q plot, qualitatively

very similar to Fig. 2, shows that Q
N
(y, lA )−Q

N
(y@ , l@) follows a x2

1
distribution approxi-

mately. As expected, the plots, for which Fig. 2 are typical, show that all these tests are
conservative in the tails in the sense that using the nominal size-a x2 critical value for
small a would lead to a test of size less than a.

The results of these tests demonstrate a simplicity of use compared to the methods of
Rotnitzky & Jewell (1990). Since our tests are analogous to Rao’s score test, for a fair
comparison we contrast our test only with their generalised score test. Rotnitzky & Jewell’s
score test statistics also follow an asymptotic chi-squared distribution with q degrees of
freedom, but a major drawback is that this limiting x2 distribution relies on correct
specification of the working correlation; otherwise it will not be x2. Hence a consistent
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Fig. 2. Quantile–quantile plots of Q
N
(b)−Q

N
(b@ ) (dotted lines)

relative to x2
2

(solid lines) (a) when covariance structure is
equicorrelated, (b) when covariance structure is (1).

estimator of cov(y
i
) is required. In contrast, our testing procedures do not have these

limitations, because they follow x2 distributions asymptotically regardless of the true
correlation structure.

4. A      

In this section we analyse a longitudinal dataset from a Harvard University technical
report by N. M. Laird, G. J. Beck and J. H. Ware.

This dataset is part of a study of the respiratory health effects of indoor and outdoor
air pollution in six U.S. cities. One of the main issues of interest is the effect of maternal
smoking on children’s respiratory illness. In their report, Laird et al. used a random half-
sample of the data collected on children in Steubenville, Ohio. The serial response variable
for children from ages 7 to 10 is presented as a binary outcome with 0 or 1 denoting the
absence or presence of respiratory illness. The maternal smoking habit is a dichotomous
variable with 0 as yes and 1 as no. Laird et al. treated mothers’ smoking habits as fixed
at the status at the first visit. Also, the dataset was balanced by including only those
children who had all four responses, at ages 7, 8, 9 and 10. Clearly, we would expect the
measurements for each child to be serially correlated.

We apply both the generalised estimating equation and quadratic inference function
methods to these data. The logistic link function is assumed for the marginal model, that
is

logit (m
ij
)=b0+b1xAij+b2xMSij +b3xAijxMSij ,

where the covariates x
ij

are the intercept, the child’s age A, the maternal smoking habit
indicator MS and their interaction. Here i denotes the ith child and t denotes the tth
measurement of the child. For the Bernoulli variable, the relationship between the marginal
mean and variance is A

ij
=m

ij
(1−m

ij
). If we assume the working corelation to be R

a
, then
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the generalised estimating equation is

∑
N

i=1
m< ∞iA−Di R−1

a
A−D
i

(y
i
−m

i
)=0, (14)

where m< i=(∂m
i
/∂b0 , ∂mi/∂b1 , ∂mi/∂b2 , ∂mi/∂b3 )∞ and A

i
=diag(A

ij
). The solution of (14)

with moment estimators for the working parameters is the generalised estimating equation
estimator.

If we further assume the inverse of R to be of the form a1I+a2M1 , where M1 is as in
Example 2 for the  (1) structure, then the extended score is

g
N
=

1

NA WN
i=1

m< ∞iA−1i (y
i
−m

i
)

WN
i=1

m< ∞iA−Di M
1
A−D
i

(y
i
−m

i
)B .

The quadratic inference function estimator is then found by minimising, over b,

Q
N
(b)=g∞

N
C−1
N

g
N
,

where C
N
= (1/N2 )W g

i
g∞
i
.

Table 2 provides point estimates, standard errors and t-ratios using generalised esti-
mating equations under independence, equicorrelated and  (1) working correlations,
and those using the quadratic inference function under  (1) working correlation. Note
that there is no theoretical difference between the generalised estimating equation and
quadratic inference function methods under the equicorrelated working structure, since
having an intercept in the regression model is confounded with the equicorrelation matrix
for balanced data.

Table 2. Comparison of generalised estimating equation and quadratic inference
function methods for children’s respiratory disease and mothers’ smoking habits. In
each position the first entry is the parameter estimate, the entry in brackets is the

estimated standard error, and the third entry is the t-ratio

Parameter Indep(equi)  (1)() (1) ( )

Intercept −1·892 (0·119) −15·90 −1·898 (0·120) −15·83 −1·896 (0·124) −15·32
Smoke 0·305 (0·188) 1·62 0·275 (0·190) 1·45 0·280 (0·185) 1·51

Age −0·127 (0·057) −2·22 −0·127 (0·058) −2·20 −0·128 (0·058) −2·21
Smoke1Age 0·056 (0·088) 0·64 0·062 (0·089) 0·69 0·048 (0·087) 0·54

Indep(equi), independent (equicorrelated) correlation;  (1)(), generalised estimating equation
method assuming  (1) correlation structure; (1) ( ), quadratic inference function method

assuming (1) correlation structure.

The estimates of the regression parameters are very similar for the two methods, and
the t-ratios indicate that the child’s age, Age, is a significant factor with a negative sign,
which means that older children are less likely to get respiratory disease. Maternal smok-
ing, Smoke, contributes positively to children’s respiratory disease, though it is not statisti-
cally significant; the smoking effect is somewhat inflated if the independence structure is
assumed, with t-ratio=1·62. The interaction between maternal smoking and children’s
age is insignificant, which implies that there is no indication that the decline in illness
differs according to the mother’s smoking habit.

The quadratic inference function approach allows us to go beyond individual t-tests or
‘robust’ z-tests, and to do a simultaneous test using the statistic in Theorem 1. Table 3
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provides chi-squared tests corresponding to the following null hypotheses:

(a) H0 : (Smoke, Age, Smoke1Age)=0,
(b) H0 : (Age, Smoke1Age)=0,
(c) H0 : (Smoke, Smoke1Age)=0,
(d) H0 : Smoke1Age=0.

In each case, the alternative for the test will be the full model, and the working correlation
structure is taken to be  (1). In Table 3, min Q stands for the minimum of Q

N
(b) under

the null hypotheses, and min Q
f

stands for that under the full model. A significant p-value
indicates that the current model is insufficient to explain the data. It is clear that the most
parsimonious model here is just to have the age factor, and again shows that the maternal
smoking habit and the interaction term are not significant factors. Moreover, the goodness-
of-fit test, with p-value 0·331, by Theorem 2 indicates that the model’s zero-mean assump-
tion, that is E(g

N
)=0, is not rejected.

Table 3. Children’s respiratory disease example. Model selection
based on x2 test

Covariates minQ min Q−min Q
f

df p-value

Intercept 13·247 8·652 3 0·034
Intercept, Smoke 11·192 6·597 2 0·037

Intercept, Age 6·791 2·196 2 0·334
Intercept, Smoke, Age 4·903 0·308 1 0·579
Intercept, Smoke, Age, Interaction 4·595 0 — —

Goodness of fit 4·595 — 4 0·331

min Q, minimum of quadratic inference defined in (6); min Q
f
, minimum of

quadratic inference function for the full model; df, degrees of freedom.

For the following reasons we doubt that the dataset is rich enough to conclude that
the effect of maternal smoking habit is not statistically significant: smoking status is treated
as fixed rather than as time-dependent, there is no information on the level of maternal
smoking habit, and there is no information as to whether or not the mother smokes in
the presence of her children. These would be important factors in pursuing more definitive
scientific conclusions.

5. D

The use of the extended score quadratic inference function approach can be limited by
the need for a high-dimensional extended score vector, note that the dimension of g

N
is

mq instead of q, and the specification of a linear approximate inverse. To address these
problems, we have developed an adaptive quadratic inference function method, which
requires no working assumption; see A. Qu’s unpublished Pennsylvania State University
Ph.D. dissertation. This approach reduces the dimension of the extended score vector by
adding just one moment condition to the quasi-score under independence. The moment
conditions are added based on the criterion of increasing the information in the set of
estimating functions.
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A

Proof of T heorem 1

By Taylor’s expansion,

Q(y0 , l0 )−Q(y@ , l@ )=Ay0−y@

l0−l@ B∞ Q̇(y@ , l@)+
1

2 Ay0−y@

l0−l@ B∞ Q̈(y†, l† ) Ay0−y@

l0−l@ B ,
for some (y†, l† ) between (y0 , l0) and (y@ , l@ ), and

Q(y0 , l0 )−Q(y0 , lA)= (l0−lA)∞Q̇
l
(y0 , lA)+1

2
(l0−lA)∞Q̈

ll
(y0 , l*)(l0−lA),

for some l* between l0 and lA .
Note that Q̇(y@ , l@) and Q̇

l
(y0 , lA ) are equal to 0 because (y@ , l@) and lA satisfy (12). Hence

Q(y0 , lA)−Q(y@ , l@)=
1

2 Ay@−y0
l@−l0
B∞ Q̈(y†, l† ) Ay@−y0

l@−l0
B− 1

2 A 0

lA−l0
B∞ Q̈(y0 , l*) A 0

lA−l0
B .

We establish the relationship between (lA−l0 ) and (y@−y0 , l@−l0 ) as follows. Expand Q̇
l
(y0 , lA)

about l=l0 and Q̇
l
(y@ , l@ ) about (y, l)= (y0 , l0 ) to obtain

0=Q̇
l
(y0 , l@)=Q̇

l
(y0 , l0 )+Q̈

ll
(lA−l0 )+O

p
(N−D ),

0=Q̇
l
(y@ , l@)=Q̇

l
(y0 , l0 )+Q̈

ly
(y@−y0 )+Q̈

ll
(l@−l0 )+O

p
(N−D).

Solving for lA−l0 from the two equations gives

(lA−l0 )=Q̈−1
ll

Q̈
ly

(y@−y)+ (l@−l0 )+O
p
(N−D ),

where Q̇
l
=Q̇

l
(y0 , l0 ), Q̈

ly
=Q̈

ly
(y0 , l0 ) and so on. That is

A 0

lA−l0
B=A 0 0

Q̈−1
ll

Q̈
ly

IB Ay@−y0
l@−l0
B .

Then Q(y0 , lA )−Q(y@ , l@ ) is asymptotically equivalent to

Ay@−y0
l@−l0
B1 qAJyy J

yl
J
ly

J
ll
B−A0 J

yl
J−1
ll

0 I B AJyy J
yl

J
ly

J
ll
B A 0 0

J−1
ll

J
ly

IBr Ay@−y0
l@−l0
B

= (y@−y0 )∞(Jyy−J
yl

J−1
ll

J
ly

)(y@−y0 ). (A1)

By Theorem 3.2 of Hansen (1982),

Ay@−y0
l@−l0
B�N

q qA00B , AJyy J
yl

J
ly

J
ll
B−1r ,

in distribution. Therefore, using the formula for a block matrix inverse, we have

(y@−y0 )�N
p
(0, (J

yy
−J

yl
J−1
ll

J
ly

)−1),

in distribution. By this and (A1) we see that Q(y0 , lA )−Q(y@ , l@) follows x2
p

asymptotically.
The local alternative distribution can be derived by LeCam’s Third Lemma (Hall &

Mathiason, 1990).
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